

Simposio de Cuencas Hidrográficas de PR 2022 March 10, 2022

Overview

Introduction

Green to Gray Approaches

Designing from risk to opportunity

Project Examples

Toronto, ON: The Lower Don Lands

Austin, TX: Waller Creek

Dallas, TX: Trinity River

Site design and Green-gray Integration

Engineering with Nature

1. Getting from risks to opportunities

2. Understanding the site context

- Scale: watershed to river to coastline
- The stack of natural functions
- Communities

3. Actioning

- Identifying projects and involving people
- Getting to construction

- BIOLOGY
 Biodiversity and the life histories of aquatic and riparian life
- PHYSIOCHEMICAL
 Temperature and oxygen regulation, processing of organic matter, and nutrients
- GEOMORPHOLOGY
 Transport of wood and sediment to create diverse bed forms and dynamic equilibrium
- HYDRAULIC
 Transport of water in the channel, on the floodplain, and through the sediment
- HYDROLOGY
 Transport of water from the watershed to the channel

Waterfront / waterway restoration projects underway

- The Lower Don Lands in Toronto (2008-present)
- The Tulsa Gathering Place (2011-2017)
- Austin Waller Creek (2012-present)
- Dallas Trinity River (2015-present)
- Jefferson National Expansion Memorial (2010-2015)
- Houston Buffalo Bayou (2017)
- Detroit Riverfront: Ralph C Wilson Jr Centennial Park (2018 present)
- Buffalo Waterfront: Ralph C Wilson Jr Centennial Park (2019 present)

Waterfront / waterway restoration projects underway

- The Lower Don Lands in Toronto (2008-present)
- The Tulsa Gathering Place (2011-2017)
- Austin Waller Creek (2012-present)
- Dallas Trinity River (2015-present)
- Jefferson National Expansion Memorial (2010-2015)
- Houston Buffalo Bayou (2017)
- Detroit Riverfront: Ralph C Wilson Jr Centennial Park (2018 present)
- Buffalo Waterfront: Ralph C Wilson Jr Centennial Park (2019 present)

Toronto Lower Don Lands

The Toronto Lower Don Lands project combined:

- Design of a new mouth for the Don River,
- Design of engineered control structures,
- Detailed hydraulic and hydrodynamic flood modeling,
- Ecological design of riverine wetlands and resiliency margins
- Permitting, and
- Urban design/landscape architecture for a new district of the City of Toronto.

Don River Watershed: Changing Land Use with Time

From Amirsalari, 2007, Masters Thesis University of Waterloo, Dept. of Geography

Effects of Modified Hydrology

BIOLOGY
Biodiversity and the life histories of aquatic and riparian life

PHYSIOCHEMICAL

Temperature and oxygen regulation, processing of organic matter, and nutrients

- GEOMORPHOLOGY

 Transport of wood and sediment to create diverse bed forms and dynamic equilibrium
- HYDRAULIC
 Transport of water in the channel, on the floodplain, and through the sediment
- HYDROLOGY
 Transport of water from the watershed to the channel

Urbanized hydrology requires a step adaptation in geomorphology that manages the hydraulics of flooding

Austin Waller Creek

The Waller Creek project is underway and combines:

- Hydrologic and hydraulic modeling
- Channel geomorphic evaluation and channel design for modified hydrology
- Stormwater outfall modification and improvement
- Ecological design for radically altered hydrology

Waller Creek Watershed

Heavily urbanized watershed

Extreme flooding and erosion in the lower reaches

Austin, TX - Waller Creek

Michael Van Valkenburgh Associates 2012

Effects of Modified Hydrology

BIOLOGY
Biodiversity and the life histories of aquatic and riparian life

PHYSIOCHEMICAL

Temperature and oxygen regulation, processing of organic matter, and nutrients

- GEOMORPHOLOGY
 Transport of wood and sediment to create diverse bed forms and dynamic equilibrium
- HYDRAULIC
 Transport of water in the channel, on the floodplain, and through the sediment
- HYDROLOGY
 Transport of water from the watershed to the channel

Radically altered hydrology requires a step adaptation in geomorphology

Adapted Channel Evolution

0

Dallas, TX Trinity River

- Flood management
- Sediment management
- Corps permitting and levee management
- River Channel modification / stream geomorphology
- Ecological design of wetlands and river edge margins, grasslands
- Park and trail planning

Changes in historic channel configuration

The watershed is split: grassland and forest upstream of the reservoirs, and urbanized downstream.

The watershed upstream of Dallas covers more than 6,000 square miles, with a network of dams and reservoirs.

Because the floodway is maintained in a broad and flat condition, a minor flood and a major flood look the same.

Effects of Modified Hydrology

BIOLOGY
Biodiversity and the life histories of aquatic and riparian life

PHYSIOCHEMICAL
Temperature and oxygen regulation, processing of organic matter, and nutrients

- GEOMORPHOLOGY
 Transport of wood and sediment to create diverse bed forms and dynamic equilibrium
- HYDRAULIC
 Transport of water in the channel, on the floodplain, and through the sediment
- HYDROLOGY
 Transport of water from the watershed to the channel

Urbanized and managed hydrology was historically combined with a simplified geomorphology.

Adding complexity of form creates a base for ecological diversity.

This diversity of form will also support greater ecological diversity and habitat, allowing a greater range of terrestrial and aquatic plant and fish species.

10/12/18

11/02/18

11/12/18

11/13/18

11/28/18

01/08/19

02/07/19

Site design and Green-gray Integration

Engineering with Nature

1. Getting from risks to opportunities

2. Understanding the site context

- Scale: watershed to river to coastline
- The stack of natural functions
- Communities

3. Actioning

- Identifying projects and involving people
- Getting to construction

- BIOLOGY
 Biodiversity and the life histories of aquatic and riparian life
- PHYSIOCHEMICAL

 Temperature and oxygen regulation, processing of organic matter, and nutrients
- GEOMORPHOLOGY
 Transport of wood and sediment to create diverse bed forms and dynamic equilibrium
- HYDRAULIC
 Transport of water in the channel, on the floodplain, and through the sediment
- HYDROLOGY
 Transport of water from the watershed to the channel

Ecological Restoration in an Urban Context: Functional Lift

BIOLOGY Biodiversi

Biodiversity and the life histories of aquatic and riparian life

PEOPLE EXPERIENCE NATURE

4

PHYSIOCHEMICAL

Temperature and oxygen regulation, processing of organic matter, and nutrients

CLEAN & SAFE WATER

3

GEOMORPHOLOGY

Transport of wood and sediment to create diverse bed forms and dynamic equilibrium

STABLE, FUNCTIONAL WATERWAYS

2

HYDRAULIC

Transport of water in the channel, on the floodplain, and through the sediment

STORMWATER & FLOOD MANAGEMENT

1

HYDROLOGY

Transport of water from the watershed to the channel

GREEN INFRASTRUCTURE/LID